Protein Tyrosine Phosphatase PTP1B Is Involved in Hippocampal Synapse Formation and Learning

نویسندگان

  • Federico Fuentes
  • Derek Zimmer
  • Marybless Atienza
  • Jamie Schottenfeld
  • Ian Penkala
  • Tracy Bale
  • Kendra K. Bence
  • Carlos O. Arregui
چکیده

ER-bound PTP1B is expressed in hippocampal neurons, and accumulates among neurite contacts. PTP1B dephosphorylates ß-catenin in N-cadherin complexes ensuring cell-cell adhesion. Here we show that endogenous PTP1B, as well as expressed GFP-PTP1B, are present in dendritic spines of hippocampal neurons in culture. GFP-PTP1B overexpression does not affect filopodial density or length. In contrast, impairment of PTP1B function or genetic PTP1B-deficiency leads to increased filopodia-like dendritic spines and a reduction in mushroom-like spines, while spine density is unaffected. These morphological alterations are accompanied by a disorganization of pre- and post-synapses, as judged by decreased clustering of synapsin-1 and PSD-95, and suggest a dynamic synaptic phenotype. Notably, levels of ß-catenin-Tyr-654 phosphorylation increased ∼5-fold in the hippocampus of adult PTP1B(-/-) (KO) mice compared to wild type (WT) mice and this was accompanied by a reduction in the amount of ß-catenin associated with N-cadherin. To determine whether PTP1B-deficiency alters learning and memory, we generated mice lacking PTP1B in the hippocampus and cortex (PTP1B(fl/fl)-Emx1-Cre). PTP1B(fl/fl)-Emx1-Cre mice displayed improved performance in the Barnes maze (decreased time to find and enter target hole), utilized a more efficient strategy (cued), and had better recall compared to WT controls. Our results implicate PTP1B in structural plasticity within the hippocampus, likely through modulation of N-cadherin function by ensuring dephosphorylation of ß-catenin on Tyr-654. Disruption of hippocampal PTP1B function or expression leads to elongation of dendritic filopodia and improved learning and memory, demonstrating an exciting novel role for this phosphatase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer’s Therapy?

Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. ...

متن کامل

Protein tyrosine phosphatase 1B impairs diabetic wound healing through vascular endothelial growth factor receptor 2 dephosphorylation.

OBJECTIVE Impaired wound healing is a major complication of diabetes mellitus. The mechanisms that govern wound healing, however, are complex and incompletely understood. In the present study, we determined the inhibitory role of protein tyrosine phosphatase 1B (PTP1B) in the process of diabetic wound healing. APPROACH AND RESULTS First, by comparing the wound healing process in PTP1B knockou...

متن کامل

Indomethacin serves as a potential inhibitor of protein phosphatases.

BACKGROUND/AIMS We have shown that indomethacin has the potential to activate Ca2+/ calmodulin-dependent protein kinase II (CaMKII), regardless of cyclooxygenase (COX) inhibition. To understand the underlying mechanism, the present study investigated the effect of indomethacin on protein phosphatases such as protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A), and protein tyrosine phosph...

متن کامل

Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion

Invasive cancer cells form dynamic adhesive structures associated with matrix degradation called invadopodia. Calpain 2 is a calcium-dependent intracellular protease that regulates adhesion turnover and disassembly through the targeting of specific substrates such as talin. Here, we describe a novel function for calpain 2 in the formation of invadopodia and in the invasive abilities of breast c...

متن کامل

Protein Tyrosine Phosphatase-1B Modulates Pancreatic β-cell Mass

Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of the insulin signalling pathway. It has been demonstrated that PTP1B deletion protects against the development of obesity and Type 2 Diabetes, mainly through its action on peripheral tissues. However, little attention has been paid to the role of PTP1B in β-cells. Therefore, our aim was to study the role of PTP1B in pancreatic β-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012